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Part 1. Lecture Notes

1. Introduction to the course

This is probability course taught from a measure theoretic perspective. The textbooks for this
class are by Pollard and Durrett. This course assumes knowledge on probability, linear algebra,
multivariable calculus, and real analysis.

1.1. Measure Theoretic Definitions.

Definition 1. Measure Space

A measure space is defined by the following triple (Ω,F , µ) where Ω is the outcome space, F is a
σ-filed, and µ is a measure. The measure space is the the central mathematical object of probability
theory. In the first section of the course, we will spend time developing a measure theoretic notion of
σ-field and a measure more generally. We will then apply these more abstract ideas to probability.

Example. Ω Sample/outcome space

Definition 2. Ω is the set from which our family of sets will be constructed. In probability theory,
you can think of Ω as Nature which contains the set of all possible events.

Example. (0, 1), Rn, {0, 1, 2, 3, 4, ..., n}, etc

Definition 3. F σ-field, (σ-algebra)

A σ-field of measurable sets, measurable meaning we can define a measure on the set, is a set of
sets, or a family of sets such that F ⊆ 2Ω. F has more defining properties which we will cover in
greater detail later. In probability, think of the sets in our σ-field F as the events which we observe.

We also call (Ω,F) a measurable space. Given Ω and F we can now define a measure µ

Definition 4. µ : F → R+ is a measure

We call µ probability measure if µ (Ω) = 1. Essentially, µ is a function that takes elements from
our σ-algebra as inputs and maps them to the (typically) extended real line, R+.

In this lecture we will cover where we might run into problems when attempting to define measures.
Let’s first take a look at a familiar example – the Reimann integral.

1.2. Problem with the Riemann integral. We define the Riemann integral as∫ b

a

f (x) dx
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And construct a partition of the domain, where Π = {πi} is the set of disjoint intervals within [a, b].
For each partition, πi, we define ai to be the infimum of f (x) evaluated within that interval and bi
as the supremum. More formally stated, we have that

ai = inf
x∈πi

f (x)

bi = sup
x∈πi

f (x)

Moreover, we define the lower bound (LB) and upper bound (UB) given our set of intervals as

LB (Π) ≡
∑
i

ai · |πi|

UB (Π) ≡
∑
i

bi · |πi|

and we say that f is a Riemann integrable when supΠ LB (Π) = infΠ UB (Π). The following two
figures depicts the graphs for the LB vs the UB. The idea behind the Riemann integral is that as
the number of partitions increases, the magnitude of our LB increases and the magnitude of our
UB decreases until the two are equal.

Figure 1. Lower Bound
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Figure 2. Upper Bound

Theorem 1. Riemann Integrability.

f is Riemann integrable if

(1) f is bounded

(a) Set of discontinuities has Lebesgue measure equal to 0, i.e., there are a countable
number of them.

There are several examples where the Riemann integral breaks. A classic example is the Dirichlet
function.

f : [0, 1] → {0, 1} :

{
0 x ∈ Qc

1 x ∈ Q

In this example, f is discontinuous everywhere. For any partition you take, the LB = 0 and the
UP = 1 ∴ they will never equal.

The two main problems with the Riemann integral can be summarized as follows:

(1) Holds for a limited class of functions

(2) Basic limit operations don’t hold

Example. Let’s order the rationals a1, a2, ... Now let’s define the function

fn (x) =

{
1 x ∈ {a1, . . . , an}
0 else

In this example, fn (x) → f (x) point-wise where f (x) is the Dirichlet function. But,

lim
n

∫
fn (x) dx 9?

∫
f (x) dx

does not exist.
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1.3. Defining a measure. Formally, we defined a measure as a function from a family of sets to
the real line (or extended real line). Let’s consider the following example

µ : 2Ω → R+

where µ is a measure from the power set to the extended reals. For our measure to be well-defined,
we want that at least the following three properties hold for A,B ⊂ Ω.

(1) µ (∅) = 0. The measure of the empty set is equal to 0

(2) If A ∩ B = ∅ ⇒ µ (A ∪B) = µ (A) + µ (B). If A and B are disjoint, then the measure of
their union is equal to the sum of the measures of each.

(3) If A ⊆ B ⇒ µ (A) ≤ µ (B). If A is contained in B then the measure of A is less than or
equal to the measure of B. This is called monotonicity.

However, these definitions are not sufficient to construct a well-defined measure. Let’s consider the
following counterexample.

Example. Let p 6= q ∈ Ω and A =⊆ 2Ω. Now, let’s define our “measure”

µ (A) =

{
1 if p, q ∈ A

0 else

Then, we see that µ ({p}) + µ ({q}) = 0 + 0 6= 1 = µ ({p, q}).

This result implies that µ cannot be any arbitrary function from the power-set.

Let’s take an even closer look using a more common measure, the Lebesgue measure. We define
the Lebesgue measure as

µL ([a, b]) = b− a

where [a, b] ⊆ R. Let’s consider a simple example where our loose definition of a measure fails using
a nice set and a common measure

Example. Let Ω = [0, 1], Ai = {i} for i ∈ [0, 1]. Clearly we have that µL (Ai) = 0 and ∪Ai = [0, 1].
However, we see that property (2) of our definition fails

1 = µL ([0, 1]) = µL

(
∪i∈[0,1]Ai

)
6=

∑
i∈I

µL (Ai) = 0

The problem here being that i ∈ I is uncountable.

To summarize, not all sets are measurable, and even if they are measurable we cannot deal with un-
countable additivity. Therefore, throughout this course we will be dealing with countable additivity
of measurable sets.
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2. Rings, Algebras, and Sigma Algebras

In this lecture, we formally define what it means to be a measure and study properties for the
families of sets which we will be using throughout the course.

2.1. Defining measures. In the previous lecture, we gave a very loose definition of “measures”,
and we saw examples where this definition failed. Now, we will formally define what it means to
be a measure.

Definition 5. A set function µ : A → [0,∞] is a countably (also implying finitely) additive measure
with respect to A if

(1) ∅ ∈ A then µ (∅) = 0

(2) If A1, . . . , An ∈ A and ∪n
i=1Ai ∈ A are pairwise disjoint, then µ (∪n

i=1Ai) =
∑n

i=1 µ (Ai).
Finite additivity.

(3) If {Ai}i∈I ⊆ A are disjoint and I is a countable index set and ∪i∈IAi ∈ A, then µ (∪i∈IAi) =∑
i∈I µ (Ai).

You might be wondering about uncountably additivity and monotonicity. Recall from our final
example in the previous lecture with the Lebesgue measure – our definition fails for when I is
uncountable. And as for monotonicity, it is implied by finite additivity.

Proposition 1. Finitely additive measures are monotone.

Proof. If A,B,B\A ∈ A and A ⊆ B then µ (A) ≤ µ (B). We can say µ (B) = µ (A ∪B\A) =
µ (A) + (B\A) ≥ µ (A)∴ µ (B) ≥ µ (A) �

Corollary 1. Countably additive measures are also monotone

Using similar techniques, we can also show that finitely additive measure are also finitely sub-
additive

Proposition 2. Finitely additive measures are finitely sub-additive.

Proof. WTS µ (A ∪B) ≤ µ (A)+(B) provided that A,B,A∪B,B\A ∈ A. We can say µ (A ∪B) =
µ (A ∪B\A) = µ (A) + µ (B\A) ≤ µ (A) + µ (B) ∴ µ (A ∪B) ≤ µ (A) + µ (B). �

A special type of measure which we will see throughout the course is a probability measure.

Definition 6. A measure is a probability measure if Ω ∈ A and µ (Ω) = 1.

To understand when such measures exist, we need to examine the families of sets measures are built
on.
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2.2. Families of sets. All the definitions of measures that we’ve given require certain closure
properties of the set A. In this section, we will give more structure to A, and our end goal will be
to build a measure by taking advantage of the composition rules of A.

Definition 7. A ⊆ 2Ω is a ring if

(1) ∅ ∈ A

(2) A,B ∈ A ⇒ A ∪B ∈ A

(3) A,B ∈ A ⇒ A\B ∈ A

Definition 8. Notice that A ∩B = A\ (A\B) ∈ A. Therefore, by induction we can say that rings
are closed under finite ∪,∩, and relative complements.

Definition 9. A is an algebra/field if A is a ring such that Ω ∈ A.

Since A is a ring, we know it must also be closed under finite set operations

Definition 10. A is a σ-ring if A is a ring that is closed under countable unions.

Since A is a ring and we know rings are closed under relative complements, then we also know that σ-
rings must also be closed under countable intersections. This is because ∩∞

n=1An = A1\ (∪∞
n=1A1\An)

Definition 11. A is a σ-algebra/σ-field if A is an algebra closed under countable unions

Definition 12. A is a semi-ring if

(1) ∅ ∈ A

(2) A,B ∈ A ⇒ A ∩B ∈ A

(3) A\B = ∪1≤j≤nCj , where Cj ∈ A are pairwise disjoint

2.3. Generating sets. Now, let’s discuss how we can generate families of sets from smaller families
of sets. We’ll first consider the set

I = {(a, b]}

defined to be the set of all intervals in R.

The first thing to notice is that I is not a ring. Consider the union of two disjoint I1, I2 ∈ I. Their
union is not an interval, rather it is a finite union of disjoint elements from I.
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Figure 3. I is not a ring

However, we do know that I is a semi-ring. In this example above, we can say that I is a semi-ring
because it satisfies our definition of “relative complements”.

Notice that we can easily define our Lebesgue “measure” on the semi-ring I. We can just say that
µL0 ((a, b]) = b− a. Our goal is to construct a ring from the semi-ring, extending our notion of the
Lebesgue measure such that µL1

|I = µL0
.

Theorem 2. For any semi-ring, A, let B be the set of all finite disjoint unions of sets in A. Then
B is a ring.

Proof. We know that B is a ring because it satisfies the definition �

(1) ∅ ∈ B

(2) A = ∪n
i=1Ai disjoint, B = ∪n

j=1Bj disjoint where Ai, Bi ∈ A, then by definition A,B ∈ B.
However, we can also say that A ∩ B = ∪i.jAi ∩ Bj which is the union of finite, disjoint
intervals so A ∩B ∈ B.

(3) B\A ∈ B. We can say that B\A = ∪i,jBj\Ai where Bj\Ai is disjoint so we’re done.

(4) A ∪B = A ∪ (B\A) is disjoint where A ∈ B, B\A ∈ B so their union is also in B

Let’s now define the set J to be the ring generated by the finite disjoint union of elements in I.
Now, let’s extend µL0 on our semi-ring I to µL1 defined on our ring J . If J ∈ J then we know
that J = ∪n

i=1Ii where Ii ∈ I are disjoint. So let’s define µL1
as

µL1 (J) ,
n∑

i=1

µL0 (Ii)

Theorem 3. µL1
on J is a finitely additive measure.

Proof. We need to check that µL1
satisfies the conditions for what it means to be a finitely additive

measure on a set. �
8
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(1) µL1 (∅) = 0

(2) J1, J2 ∈ J disjoint, then we have J1 = ∪n
i=1I1i and J2 = ∪n

i=1I2j where all I’s are disjoint
by definition. Then µL1 (J1 ∪ J2) =

∑
i µL0 (I1i) +

∑
j µL0 (I2j) = µL1 (J1) + µL1 (J2) .

Thus extending the µL0
on I to finitely additive measure µL1

on the ring J .

Our goal now is to extend µL1
to be a countably additive measure on the σ-algebra.
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3. Sigma Algebras and Outer Measures

In the previous lecture, we’ve shown how to extend the Lebesgue “measure” on the semi-ring of half
open, half closed intervals to a finitely additive measure on the on the ring generated by the side
of all finite disjoint unions of half open, half closed intervals. In this lecture, we will continue with
this reasoning and try to extend our finitely additive Lebesgue measure on our ring to a countable
additive measure on a σ algebra which contains our rings, and hence our semi-ring.

3.1. Motivation. Apart from showing that it’s possible to extend our notion of a “measure” to
larger families of sets, there’s also a practice reason for doing – countably additive measures on
σ-algebras allow us to take limits.

Proposition 3. Countably additive measures are “continuous” on σ-algebras

(1) Ai ↑ A (A1 ⊆ A2 ⊆ ... and ∪Ai = A) ⇒ µ (Ai) ↑ µ (A)

(2) Ai ↓ A and µ (A1) < ∞ (A1 ⊇ A2 ⊇ ... and ∩Ai = A) ⇒ µ (Ai) ↓ µ (A)

Let’s look at the proof for (1).

Proof. Define B1 = A1 and Bi = Ai\Ai−1 for i > 1 as depicted by the figure below.

Figure 4. Proposition 3 Part 1

Given how Bi is defined, we know they are disjoint and we know that An = ∪n
i=1Bi, so A = ∪iBi .

By monotonicity, we also know that µ (An+1) ≤ µ (An).

With what we know, we can say that µ (A) = µ (∪iBi) and by countable additivity we can say
µ (∪iBi) =

∑
i µ (Bi) = limn

∑n
i=1 µ (Bi) and now by finite additivity we have limn µ (An) . �

3.2. Generating larger families of sets. In the previous lecture, we constructed a ring from a
semi-ring. Now, we want to discuss generating any larger family of sets which contains some initial
family A ⊆ 2Ω.

For example, we say that ring (A) ,smallest ring that contains A. Similarly for σ-ring(A), alg(A),
or σ-alg(A) (which we will just denote by σ (A)). Slightly more formally, we say that the ∗ (A) = ∩B
for all sets B such A ⊆ B and B has the desired properties of A. Given this definition, let’s go back
to our previous example looking at the set of all half open, half closed intervals on the real line.

10
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Proposition 4. ring(I) = J = {all finite disjoint union of elements in I}.

Proof. Any ring B that contains I must also contain all finite disjoint unions. Hence, we know that
J ⊆ B for all such B. Since we’ve showed that J is a ring, this confirms that J must also be the
smallest ring. �

Since our goal for the lecture is to construct a measure on a σ-algebra, naturally we may ask what
is σ (I)? Consider the following definition.

Definition 13. Let X be a topological space (ex: R). The Borel σ-algebra on X denoted by B (X )
is the smallest σ-algebra that contains all open sets.

Proposition 5. Let G = {all open sets in R}. Then σ (I) = σ (G) = B (R), i.e., both I and G
generate B (R).

Proof. By definition, σ (G) = B (R). Now we need to show that ∀I ∈ I, I ∈ σ (G) and ∀G ∈ G, G ∈
σ (I). Since I is the set of all half-open, half-closed intervals,I ∈ I such that I = (a, b], we can
say that (a, b] = ∩∞

i=1

(
a, b+ 1

i

)
∈ σ (G) since σ algebras are closed under countable intersections.

Thus, we know that σ (I) ⊆ σ (G). To show that σ (G) ⊆ σ (I), we need to use that fact that every
nonempty open set in R is the disjoint union of a countable number of open intervals. Consider
G ∈ σ (G) such that G = (a, b). Using that fact, we can say that (a, b) = ∪i

(
a, b− 1

i

]
∈ σ (I).

Thus, we know that σ (G) ⊆ σ (I) and can conclude that B (R) = σ (G) = σ (I). �

Returning to our discussion of the Lebesgue measure, we’ve already shown that it is finitely additive
on the ring(I). Now we will show that it is also countably additive on the ring(I).

Theorem 4. µL1 is countably additive on the ring(I)

Proof. Let {Ai} ⊆ ring (I) be countable, and pairwise disjoint and let A = ∪Ai ∈ ring (I). We
want to show that µL1 (A) =

∑
i µL1 (Ai). The proof for this can be split into steps. The first step

is to show that µL1 (A) ≥
∑

i µL1 (Ai). Then we will show that µL1 (A) ≤
∑

i µL1 (Ai) which is
more involved. For the first step, we know that ∪n

i=1Ai ⊆ A, so by monotonicity we can say that
µL1

(A) ≥ µL1
(∪n

i=1Ai) =
∑n

i=1 µL1
(Ai) by finite additivity on the ring(I). Now just let n ↑ ∞

and we’re done. For step 2, let’s consider the following: let A = ∪K
k=1Jk be finite disjoint unions of

Jk ∈ I and let ∪iAi = ∪i ∪ni
j=1 Iij be countable and disjoint since all Ai are disjoint and Iij ∈ I.

The figure below represents such a construction.
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Figure 5. Therem 4 Step 2

By finite additivity, we know that µL1 (A) =
∑K

k=1 µL1 (Jk). And again by finite additivity
we can say that

∑
i µL1 (Ai) =

∑
i

∑ni

j=1 µL1 (Iij). Since our measures are ≥ 0, we can say∑
i

∑ni

j=1 µL1
(Iij) =

∑K
k=1

∑
i,j µL (Iij) such that Iij ⊆ Jk. Recall that our goal is to show that

µL1
(A) ≤

∑
i µL1

(Ai) ⇒
∑K

k=1 µL1
(Jk) ≤

∑K
k=1

∑
i,j µL1

(Iij). If we can show that for some
arbitrary Jk that µL1

(Jk) ≤
∑

i,j µL1
(Iij) then we will have completed our proof. Let’s choose

some interval J = (a, b], to restate our goal we want that µL1
((a, b]) ≤

∑
l µL1

((al, bl]) where the
intervals {(al, bl]} represent a countable, disjoint cover for (a, b]. Our goal is to extract a finite cover
for the set (a, b] . We can say the following,

(a+ ε, b] ⊆ [a+ ε, b] ⊆ (a, b] = ∪l (al, bl]

(al, bl] ⊆
(
al, bl +

ε

2l

)
⊆

(
al, bl +

ε

2l

]
which implies that [a+ ε, b] ⊆ ∪l

(
al + bl +

ε
2l

)
and by compactness we know that there must exist

a finite cover such that [a+ ε, b] ⊆ ∪l∈L

(
al, bl +

ε
2l

)
where L is a finite index set. By the steps

above, we now have

(a+ ε, b) ⊆ ∪l∈L

(
al, bl +

ε

2l

)
⇒

b− (a+ ε) ≤
∑
l∈L

(
bl +

ε

2l
− al

)
(monotonicity and finite subadd.)

b− a ≤
∑
l∈L

(bl − al) +
∑
l∈L

ε

2l
+ ε

b− a ≤
∑
l

(bl − al) + 2ε(take l to be countable)

µL1
((a, b]) ≤

∑
l

µL1
((al, bl]) (take ε ↓ 0)

Repeating this process for each Jk, we will have that µL (A) ≤
∑

µl (Ai) which implies µL is
countably additive on ring(I) �

Our new goal, is to extend our notion of µL1
to the σ (I). To do so, we need to develop the idea of

an outer-measure.

Definition 14. Let µ∗ : 2Ω → R+ ∪ {+∞} be an outer-measure if
12
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(1) µ∗ (∅) = 0

(2) A ⊆ B ⇒ µ∗ (A) ≤ µ∗ (B)

(3) If A ⊆ ∪iAi is countably and not necessarily disjoint, then µ∗ (A) ≤
∑

µ∗ (Ai), i.e. is
countable sub-additive

Theorem 5. Carathéodory Extension Theorem. Given a countably additive measure, µ, on the
ring A. Let

C = {A ⊆ Ω s.t µ∗ (E) = µ∗ (E ∩A) + µ∗ (E ∩Ac) ,∀E ⊆ Ω}
call element A ∈ C the measurable set.

(1) A ⊆ C (⇒ σ (A) ⊆ C)

(2) C is a σ-algebra

(3) µ∗ is a countably additive measure on C (and hence on σ (A))

(4) µ∗ respects µ on A (A ∈ A ⇒ µ∗ (A) = µ (A)).

Now, let’s introduce how to construct the outer-measure. Given a countably additive measure µ on
ring A, then ∀E ⊆ Ω let

µ∗ (E) = inf

{ ∞∑
i=1

µ (Ai) s.t. Ai are countable cover of E,Ai ∈ A,∪Ai ⊇ E

}
If no such cover exists, then we µ∗ (E) = ∞

13
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4. Caratheodory’s Extension Theorem

In this lecture, we continue our discussion of outer-measures and Carathéodory’s extension theorem.
Carathéodory’s extension theorem is so powerful because it tells us that if we have a measure on a
ring then we know there exists a unique extension of that measure to a sigma algebra, so long as
certain conditions are met.

4.1. Construction of an outer-measure. Let’s recall how we can construct an outer-measure
given a countably additive measure µ on a ring A. For all E ⊆ Ω, we have that

µ∗ (E) = inf

{∑
i

µ (Ai) where Ai ∈ A countable , E ⊆ ∪Ai cover
}

and if no such cover exits then µ∗ (E) = ∞

Theorem 6. The construction defined above is, in fact, an outer-measure.

(1) µ∗ (∅) = 0

(2) E1 ⊆ E2 ⊆ Ω ⇒ µ∗ (E1) ≤ µ∗ (E2)

(3) Ei,E ⊆ Ω s.t. E ⊆ ∪Ei (countable) ⇒ µ∗ (E) ≤
∑

µ∗ (Ei)

(4) If A ∈ A then µ∗ (A) = µ (A), i.e., µ∗ respects µ on A.

Proof. Let’s prove each statements individually. �

(1) Let each Ai = ∅, then {Ai} is a cover of ∅ and
∑

i µ (∅) = 0.

(2) Any cover of E2 must also cover E1.

(3) If
∑

µ∗ (Ei) = ∞ then there is nothing to prove. If
∑

µ∗ (Ei) ≤ ∞ ⇒ µ∗ (Ei) < ∞,∀i,
however, then we require more. Fix ε > 0, choose Aij ∈ A s.t. Ei ⊆

⋃
j Aij , then

µ∗ (Ei) ≤
∑
j

µ (Aij) < µ∗ (Ei) +
ε

2i

which follows by the definition of the infimum. Since E ⊆
⋃

i Ei ⊆
⋃

i

⋃
j Aij , then we know

that

µ∗ (E) ≤
∑
ij

µ (Aij) ≤
∑
i

(
µ∗ (Ei) +

ε

2i

)
=

∑
i

µ∗ (Ei) + ε

now let ε ↓ 0, and we have

µ∗ (E) ≤
∑
i

µ∗ (Ei)

(4) Let A ∈ A show µ∗ (A) = µ (A). First let’s show that µ∗ (A) ≤ µ (A). Let A1 = A,
and Ai = ∅ for i = 2, 3, ... so {Ai} is a countable cover of A. This implies that µ∗ (A) ≤∑

i µ (Ai) = µ (A1) = µ (A)⇒ µ∗ (A) ≤ µ (A). For the opposite direction, µ∗ (A) ≥ µ (A),
14
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we want to show that all covers are ≥µ (A). Let {Ai} ⊆ A be a countable cover of A, i.e.,
A ⊆

⋃
i Ai. Now let Bi = A

⋂(
Ai\

⋃
j<i Aj

)
and consider the following diagram below,

Figure 6. A and Bi Illustration

In the figure, we did not complete the cover {Ai} of A, but we get a general sense for how the Bi

are supposed to be interpreted. Once we include the entire cover of A however, notice that we can
say that Bi are disjoint, Bi ∈ A, Bi ⊆ Ai and A =

⋃
Bi. This implies that µ (A) =

∑
µ (Bi) by µ

countable additivity on A and since A ⊆
⋃
Ai, we know by monotonicity that µ (A) =

∑
µ (Bi) ≤∑

i µ (Ai) which generalizes to be true for all covers {Ai} thus accomplishing our goal in showing
that µ (A) ≤ µ∗ (A) and concluding our proof that µ (A) = µ∗ (A).

Our goal for this section is to find a σ-algebra, F ⊆ 2Ω s.t. A ⊆ F and µ∗, the outer measure
defined in 2Ω, is a countably additive measure on F .

4.2. Caratheodory’s Extension Theorem. Given a countably additive measure µ defined on
the ring A. Let µ∗ be the outer measure that respects µ on A. Now let

C = {A ⊆ Ω s.t µ∗ (E) = µ∗ (E ∩A) + µ∗ (E ∩Ac) ,∀E ⊆ Ω}

and call sets in C the measurable sets. Then,

(1) A ⊆ C

(2) C is a σ-alg

(3) µ∗ is a countably additive measure on C and hence on A
15
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Let’s make a few observations regarding the statement. The first is that (1) and (2) imply that
A ⊆ σ (C) = C ⇒ σ (A) ⊆ C. This means that C is a σ-algebra that contains σ (A), but it’s not
necessarily the smallest. We also know that by countable sub-additivity of µ∗, we must always have
that when E ⊆ ∪Ei ⇒ µ∗ (E) ≤

∑
µ∗ (Ei). In this example, we can just let E1 = E ∩ A and

E2 = E ∩ Ac and we have that µ∗ (E) ≤ µ∗ (E ∩A) + µ∗ (E ∩Ac). Therefore, the difficulty arises
in relationship to the Carathéodory Extension Theorem when showing equality.

Let’s consider the following example. Let A
⋂

B = ∅ and let A ∈ C, so we know it’s a measurable
set. Then we can say the following

µ∗ (A ∪B) = µ∗ ((A ∪B) ∩A) + µ∗ ((A ∪B) ∩Ac)

= µ∗ (A) + µ∗ (B)

i.e., they are equal in subadditivity.

Now, we will attempt to cover the intuition for splitting. Recall for the Riemann integral, the goal
was to take the limit such that we the upper bound equal to the lower bound. Similarly, we consider
the outer measure, µ∗ (A) and the “inner” measure which we’ll define by

µ∗ (A) = µ∗ (Ω)− µ∗ (Ac)

If these two objects are equal, then we’ll have µ∗ (Ω) = µ∗ (A) + µ∗ (Ac) as desired. Since, there’s
nothing inherently special about Ω, we can split it up with respect to any E ⊆ Ω such that

µ∗ (E) = µ∗ (E ∩A) + µ∗ (E ∩Ac)

Recall that by the very definition of the outer-measure, we are given subadditivity for free (≤), but
now we need to prove (≥). Let assume that µ∗ (E) < ∞ or else the proof is trivial.

Proof. Proof of Carthéodory’s Extension Theorem. We first need to show that A ⊆ C, i.e., if A ∈ A
then A ∈ C.

µ∗ (E) = µ∗ (E ∩A) + µ∗ (E ∩Ac) ,∀E ⊆ Ω

We already know that (≤) is given by subadditivity so we need to go about showing (≥). Let’s fix
E ⊆ Ω such that µ∗ (E) < ∞ and fix ε > 0. Take {Ai} ⊆ A be a countable cover of E such that
(1) E ⊆ ∪iAi and (2)µ∗ (E) ≤

∑
µ (Ai) < µ∗ (E) + ε. We just need to show that the cover can be

used to cover E ∩A and E ∩Ac. We know that {Ai} is a countable cover for E, therefore we know
that E ∩ A ⊆ ∪i (Ai ∩A) and E ∩ Ac ⊆ ∪i (Ai ∩Ac). We can also say that Ai ∩ A and Ai ∩ Ac

belong to the ring A where recall µ (A) is a defined as a countably additive measure. Now we can
take all of our pieces and say that

µ∗ (E ∩A) + µ∗ (E ∩Ac) ≤
∑
i

[µ (Ai ∩A) + µ (Ai ∩Ac)]

=
∑
i

µ (Ai)

≤ µ∗ (E) + ε (by our definition)

Now just let ε ↓ 0 and we finally have that µ∗ (E ∩A) + µ∗ (E ∩Ac) ≤ µ∗ (E) thus completing our
proof for µ∗ (E) = µ∗ (E ∩A) + µ∗ (E ∩Ac) and show that ∀A ∈ A ⇒ A ∈ C. Now we must show

16
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that C is a σ-algebra. We will now check that each condition is satisfied. (1) ∅ ∈ C. Let A = ∅, then
µ∗ (E) = µ∗ (∅) + µ∗ (E ∩ Ω) = µ∗ (E). (2) If A ∈ C then Ac ∈ C. This is true by the symmetric
definition of the measurable sets. (3) If A,B ∈ C then A∩B ∈ C. We know that A ∈ C, so we have
that

µ∗ (E) = µ∗ (E ∩A) + µ∗ (E ∩Ac)

= µ∗ ((E ∩A) ∩B) + µ∗ ((E ∩A) ∩Bc) + µ∗ (E ∩Ac) (since we know B ∈ C)
= µ∗ (E ∩ (A ∩B)) + µ∗ (E ∩ (A ∩B)

c ∩A) + µ∗ (E ∩ (A ∩B)
c ∩Ac)

= µ∗ (E ∩ (A ∩B)) + µ∗ (E ∩ (A ∩B)
c
)

thus showing that A ∩B ∈ C. And since A ∩B = (Ac ∩Bc)
c, then we know that C is closed under

complements so it must be an algebra. To show that it’s a σ-algebra, we need to verify that C is
also closed under countable unions. Let’s consider the set {Ai} ⊆ C and let B = ∪Ai such that
B ∈ C. Define Bn , ∪n

i=1Ai ∈ C by finite ∪. WLOG, assume that Ai are disjoint, thus Bn is a
disjoint union of A1, ..., An. We now have that

µ∗ (E) = µ∗ (E ∩Bc
n) + µ∗ (E ∩Bn)

= µ∗ (E ∩Bc
n) + µ∗ (E ∩Bn ∩An) + µ∗ (E ∩Bn +Ac

n)

= µ∗ (E ∩Bc
n) + µ∗ (E ∩An) + µ∗ (E ∩Bn−1)

by recursion, this implies that

µ∗ (E ∩Bn) = µ∗ (E ∩An) + µ∗ (E ∩Bn−1)

= µ∗ (E ∩Bc
n) +

n∑
i=1

µ∗ (E ∩Ai)

≥ µ∗ (E ∩Bc) +

n∑
i=1

µ∗ (E ∩An)

µ∗ (E) ≥ µ∗ (E ∩Bc) +
∑
i

µ∗ (E ∩An)

≥ µ∗ (E ∩Bc) + µ∗ (E ∩B)

and we have ≤ by sub-additivity so we know that countable unions are in C.

Now, we want to show that µ∗ is countably additive on the σ-algebra C. Let {Ai} ⊆ C be disjoint,
countable. Let B = ∪Ai ∈ C. We have that µ∗ (B) ≤

∑
µ∗ (A) by countable sub-additivity

but now we want that µ∗ (B) ≥
∑

µ∗ (A). We know from the previous proof that µ∗ (E) ≥
µ∗ (E ∩Bc) +

∑
i µ

∗ (E ∩Ai). Now let E = B and we have

µ∗ (B) ≥ 0 +
∑
i

µ∗ (B ∩Ai)

=
∑
i

µ∗ (Ai)

thus completing our proof. �
17
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We have finally constructed a countably additive measure on a σ-algebra based on a countably
additive measure on a ring.

4.3. Existence and Uniqueness. Now, we want to ask under what conditions the measures we’ve
constructed on our σ-algebra exist and unique. Let µ be a countably additive measure on the algebra
A. Let λ be a countably additive measure on the σ (A) that respects µ on A. We actually already
know that λ exists by the Cartheorody Theorem, but is it unique? The answer is no!

Consider the following counter example. Let A = alg (I) and let µ (A) = +∞ whenever A 6= ∅.
Now, let’s define B = σ (A). For B ∈ B let λ1 (B) = +∞ whenever B 6= ∅. Note that λ1 respects
µ on A. But now also let λ2 (B) = counting measure. Note, λ2 (B) also respects µ on A because
counting the number of elements in an interval is uncountably infinite. However, notice the following
difference when considering singletons

λ1 ({x}) = +∞
λ2 ({x}) = 1

Why does this happen? It’s because the algebra of intervals actually does not contain singletons.
In the section, we will address how to fix this problem.

5. Completion of a Measure

This section completes our construction of countably-additive measure on the α-algebra. We first
discuss how to ensure uniqueness of a measure and then broaden our application of measures to
measurable functions.

5.1. Existence and Uniqueness. Recall that Cartheodory’s extension theorem allowed us to go
from a countably additive measure on the ring A, to a countably sub-additive outer-measure on the
power set 2Ω, and finally the countably additive outer-measure µ∗|C , where C is the sigma algebra
of measurable sets which respects our measure µ on our ring.

At the end of the previous lecture, we showed a counter example for uniqueness using two different
“measures”. In this lecture, we’ll go over how to fix this to guarantee uniqueness.

Definition 15. Let µ be a countably-additive measure on the algebra A. We say µ is σ-finite if
∃ {An} ⊆ A s.t.

(1) µ (An) < ∞,∀n

(2) Ω = ∪An

For example: µLeb on R is σ-finite (let An = (n, n+ 1] but µcount on R is not since we
cannot express R as a countable unite of finite sets.

Theorem 7. Cartheodory-Hahn: Let µ be countably additive on the ring A.

(1) µ∗|C is a countably additive measure on a σ-algebra

(2) If µ is σ-finite then µ∗| is a unique measure on Cthat respects µ on A
18
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5.2. Completion. Now that we’ve shown that if our measure µ defined on ring, A,is σ-finite, then
we know that there must exist a unique measure µ∗ defined on a σ-algebra, C, that respects µ on
A, and we can move to our next topic which is completion.

Definition 16. A measure space (Ω,A, µ) is complete if A contains all subsets of sets of measure
0.

Proposition 6. If A ⊆ Ω s.t. µ∗ (A) = 0 ⇒ A ∈ C.

Proof. Let’s assume that there exists some A ⊆ Ω such that µ∗ (A) = 0. We want to show that A
is in our σ-algebra of measurable sets, C. For this to be true, then ∀E ⊆ Ω, µ∗ (E) = µ∗ (E ∩A) +
µ∗ (E ∩Ac).

(1) µ∗ (E) ≤ µ∗ (E ∩A) + µ∗ (E ∩Ac) ,∀E by subadditivity of µ∗

(2) For the other direction
µ∗ (E) ≥ µ∗ (E ∩Ac) by monotonicity

= µ∗ (E ∩Ac) + µ∗ (A) by hypothesis
≥ µ∗ (E ∩Ac) + µ∗ (E ∩A) by monotonicity

Thus, we can conclude that A ∈ C. �

Theorem 8. FLeb is the completion of B (R) and the measurable space is given by (R,FLeb, µLeb),
and B (R) ⊆ FLeb

We say that the completion of a σ-algebra, A, is the smallest complete σ-algebra that contains A.

5.3. Outer and inner approximation of Lebesgue measurable sets. When talking the
Lebesgue measure, most people mean with respect to B (R). The difference comes from the in-
clusion of all the measure zero sets (FLeb).

Theorem 9. Let A ⊆ R. Then A is Lebesgue measurable iff any of the following hold:

(1) ∀ε > 0, ∃ open set O ⊇ A s.t. µ∗ (O\A) < ε (outer method)

(2) ∃Gδ set G ⊇ A s.t. µ∗ (G\A) = 0 where Gδ is a countable intersection of open sets (outer
method)

(3) ∀ε > 0, ∃ closed set F ⊆ A s.t. u∗ (A\F ) < ε (inner method)

(4) ∃Fδ set F ⊆ A s.t. µ∗ (A\F ) = 0 where Fδ is a countable union of closed sets.(inner
method)

The main takeaway from Theorem 9 is that one can approximate any Lebesgue measurable set by
B (R) arbitrarily closely with respect to the outer measure, µ∗.

19
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Proof. First, let’s show that if A is Lebesgue measurable then any of the 4 instances above hold.
Lets consider the case where µ∗ (A) < ∞, then ∀ε > 0, ∃ a countable cover,{Ik} ⊆ I, of A such
that µ∗ (A) ≤

∑
k µL (Ik) < µ∗ (A) + ε. If Ik = (ak, bk] and let Ok =

(
ak, bk + ε

2k

)
be open. This

implies that A ⊆ ∪Ik ⊆ ∪Ok ≡ O. We can say,

µ∗ (O) ≤
∑

µ∗ (Ok) (by sub-additivity of the outer measure)

≤
∑

µ∗
((

ak, bk +
ε

2k

])
(by monotonicity)

=
∑

µL (Ik) +
ε

2k

≤ [µ∗ (A) + ε] + ε

By assumption, µ∗ (A) < ∞, so we know that µ∗ (O) − µ∗ (A) ≤ 2ε. We also assume that A is
Lebesgue measurable, therefore by the Cartheodory theroem we know that

µ∗ (O) = µ∗ (O ∩A) + µ∗ (O ∩Ac)

= µ∗ (A) + µ∗ (O\A)

⇒
µ∗ (O\A) = µ∗ (O)− µ∗ (A) ≤ 2ε

Thus completing our proof for the case when µ∗ (A) < ∞(1). Now let’s consider when µ∗ (A) = ∞.
Let Ai = A ∩ (i, i+ 1] then Ai is measurable µ∗ (Ai) < ∞. Then ∀Ai ∃Oi open s.t. Ai ⊆ Oi

and µ∗ (Oi\Ai) ≤ ε
2i . Let O = ∪Oi. Then O\A = (∪Oi) \A ⊆ ∪i (Oi\Ai) .This implies that

µ∗ (O\A) ≤
∑

µ∗ (Oi\Ai) ≤
∑

ε
2i = 0, thus concluding our proof for (1).

Now, let’s show that (1) ⇒ (2) ⇒ A is Lebesgue measurable. For every k choose Ok ⊇ A such that
µ∗ (Ok\A) ≤ 1‘

k . Let G = ∩kOk ∈ Gδ. We now have that G\A ⊆ Ok\A,∀k. Hence, we can say that
µ∗ (G\A) ≤ µ∗ (Ok\A) ≤ 1

k and let k ↑ ∞. Thus, know that there exists some G ∈ Gδ such that
µ∗ (G\A) = 0. This implies that G\A is measurable because we know that the lebesgue measure
is complete. Hence, we can say that A = G ∩ (G\A)

c and since G and G\A is measurable, then A
must be measurable. �
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